TETRAZOLO-AZIDO ISOMERIZATION IN HETEROAROMATICS—II¹ SYNTHESES AND CHEMICAL REACTIVITIES OF

TETRAZOLOPYRIDINES²

T. SASAKI, K. KANEMATSU and M. MURATA

Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University, Nagoya, 464, Japan

(Received in Japan 3 July 1971; Received in the UK for publication 11 July 1971)

Abstract—The tetrazolo-azido transformations of four model compounds (4, 5, 6 and 7) are examined by spectral means. The heats of isomerization as a function of temperature have been determined for 5 and 6 from NMR spectral data. Chemical reactivities of tetrazolo-pyridines with aniline and dimethyl acetylene-dicarboxylate have been examined.

THE CHEMISTRY of heteroaromatic nitrenes has received little attention³ compared with that of phenyl nitrene, although several N-heterocycles bearing an azido group adjacent to the annular nitrogen have been investigated from their spectral point of view.⁴

Recently, we reported the tetrazolo-azido transformation, and photochemical and thermal reactions of tetrazolopyrazines, tetrazolopyridazines and tetrazolo-*as*-triazines.² While, Wentrup described the isomerizations of tetrazolopyrimidines, tetrazolopyridazines and tetrazolopyridines, and provided evidence for nitrene formation in the gas-phase.⁵

As a continuation of the work, this paper deals with the NMR spectral evidence for tetrazolo-azido isomerization in the pyridine ring and some chemical properties of these systems.

RESULTS AND DISCUSSION

Syntheses and spectral studies of tetrazolopyridines. Tetrazolo[1,5-a]pyridines 4 and 5 were prepared from either the corresponding halogeno compounds and sodium azide in the presence of HCl or the corresponding 2-hydrazinopyridines and NaNO₂ by the modified method of Boyer *et al.*⁶ Nitration of 4 at 120° gave 6-nitrotetrazolo-[1,5-a]pyridine (6) in 90% yield, which was identified by the spectroscopic comparison with a specimen prepared by the unambiguous method⁶ from 5-nitro-2-chloropyridine and NaN₃ in HCl. Analogously, bromination of 4 at 75° gave 6-bromotetrazolo-[1.5-a]pyridine (7) in 56% yield, the structure of which was assigned as above by NMR comparison with 6.

Since the presence of an equilibrium between azido and tetrazolo group in some tetrazolopyridines with electron withdrawing and/or electron donating substituents in the pyridine ring has been confirmed by IR and UV spectral inspections, $^{6.7}$ we re-examined the substituted tetrazolopyridine systems (4–7) by both IR and NMR spectral analyses. These spectral data are summarized in Table 1 and 2.

SCHEME 1

5122

Fig 1. Temperature dependences on the equilibrium constants (K_T) for 5 in DMSO- d_6 (Ia) and for 6 in CDCl₃ (Ib).

Compound No.	4	5	6	7
t n ⁻¹		-	-	·
Br	_	_	_	
Br ≕N	1630	1620	1646	1623
HCI3		2150 (s)*	2155 (w)*	_
ĤCl₃ ≕N	1630	1587	1640	1626
F,COOH		2150 (s)	2155 (w)	_
F₃COOH ≕N	1630	1592	1640	1628
MSO		2150 (s)		_
м s о — N	1630	1590	1645	1623
CH3)2CO		2150 (s)	2160 (w)	_
	1630	1587	1640	1625

TABLE 1. IR SPECTRAL DATA OF TETRAZOLOPYRIDINFS

* s = strong, w = weak

SPECTRAL ASSIGNMENTS
NMR
UNA N
IOITAZI
SOMER!
TS OF I
S, HEA
DONSTANT
EQUILIBRIUM C
TABLE 2.

	N ²
<u>}</u> ال	/ °
ا 	r z z z z z
ŗ,ţ	Z.~~ "

Compound	Solvent	Concri.	Probe	ļ	ΔHİ				t~V8	lues			
No.		w/v%	temp		(kcal/mol)		Tetrazolo ta	automer*			Azido tau	tomer*	
						H,	H5	Н¢	н,	H3	H.	H,	н
4	cDCI,	7	23			1-89	2:26	2-62	1-09				
			3			1.88	2:27	2.65	1·13				
	CF ₃ COOH	٢	23			1.50	1-56	2-08	0·72				
	CD,0D	٢	23			1-85	2.14	2.57	0.86				
	(CD ₃) ₂ CO	ę	23			1-83	1-90	2-53	0.84				
	pyridine	Ś	23			1-87	2-37	2-79	0-81				
	DMSO-de	9	23			171	209	2-51	0-68				
		9	80			1-79	2·13	2.56	0-73				
		ę	120			1-83	2.17	2.60	1-07				
	DMSO-4 ₆ /CF ₃ COOH	ŝ	23			1·89	2.21	2.65	0-96				
w)	CDCI,	٢	23	18-0		2.00	2-30-2-60		2.64	2-96	2.43	l	3-30
			4	only azido	form								
	DMSO-d ₆	7	25	2-51)		1.75	1-95-2-25	1	2-39	2-66	2-09	ł	3-01
		٢	57	4-32 >	3.4 ± 0.5	1.70	1-90-2-20	I	2:32	2.55	2-05	I	2.94
		٢	80	6-37)		1-70	1-90-2-20	1	2.32	2.50	2-02	ļ	2.90

T. SASAKI, K. KANEMATSU and M. MURATA

Commonind		μ υμαυ υ	Decha		+11 Y				t-Vâ	lues			
No	Solvent		temp	K_{T}^{\dagger}	tuo (local/mol)	L	etrazolo	tautome	•.		Azido t	automer*	
		o/ 1/m	rem p			Η,	H,	н	н,	H3	H,	H,	Н
ý	CDCI,	5	23	0-83)		1.87	1-59		0.19	3-12	1-66	1	0.87
		5	4	- 5 -	4.2 ± 0.5	1.86	1-56	I	0:22	3-23	ż	I	0.88
		S	8	1.15)		1.89	1.61	1	0.24	3.16	1·68	ļ	1-02
	CF ₃ COOH	s.	23	3-84		1.53	1-17	I	-0-05	2·08	0-83	Ι	0-50
	CD,OD	ŝ	23			1.74	1-42		-0.30				
	DMSO-46	5	23			1-63	143	I	-0-58				
		5	120			1.68	1-48	1	-0-59				
7	cDCI	7	23			2.33	2:04		1-05				
			4			2.33	2-06	I	1-03				
	DMSO-d ₆	7	90			2.35	2.06	I	ġ				
		12	80			2-21	2-05	I	0-57				
		12	120			2·23	2-07	Ι	0-59				
 Ratios of ti 	he integrated proton in	tensities of the	azido tautoi	mer to thos	e of the tetraz	olo tauto	mer						
† The estima	ted mean deviation in	K_T was less that	n±0-02										

TABLE 2—continued

 \ddagger $\Delta H =$ the heat of isomerization (cf. Fig. 1); Each value was determined by the mean value of three runs at the specified temperature. The least-squares standard deviation in K_T was less than ± 0.01 .

•

Remarkable differences are observed by the IR spectral comparison of compound 5 with 6; the former showed a strong azido absorption at 2150 cm⁻¹, but the latter exhibited a weak one at 2155 cm^{-1} in both CHCl₃ and TFA solutions. However, 4 and 7 showed no such absorptions. From these results, 4 and 7 are concluded to exist entirely as the tetrazole forms indifferent from the solvents. Furthermore, the NMR spectrum of 5 discloses the existence of a tetrazolo-azidoazomethine equilibrium in DMSO-d₆. The effects of the temperature on the equilibrium constants (K_T) are calculated to be 2.51 at 25°, 4.32 at 57°, and 6.37 at 80° from the ratios of the integrated intensities of the ring proton signals of the azido tautomer to that of the tetrazolo tautomer. Thus, from the variation of the equilibrium constants with several temps in DMSO-d_e the heat of isomerization is found to be endothermic with $\Delta H = 3.4 \pm 0.5$ kcal/mol (Fig. 1). While the azidoazomethine-tetrazole equilibrium of 5 is observed at 23° in CDCl₃, the azido tautomer is exclusively present at above 40°. The spectrum of 6 also discloses the presence of the azidoazomethine-tetrazole equilibrium in CDCl₃ and TFA solutions, but in DMSO-d₆ the tetrazolo tautomer is predominant. The temp dependence on the equilibrium constants (K_T) in CDCl₃ are calculated to be 0.83 at 23°, 1.04 at 40°, and 1.15 at 60°, from the ratios of the equilibrium and thus, the ΔH value is given as 4.2 ± 0.5 kcal/mol (Fig. 1). It has been stated⁵ that the heat of isomerization of tetrazolo [1,5-a] pyrimidine in DMSO was $5\cdot 1 \pm 0\cdot 1$ kcal/mol and ca. 2 kcal/mol more for the 5,7-dimethyl derivative. It appears that the heat of isomerization is generally less than 12 kcal/mol, and therefore, azide tautomerization might be the first step in pyrolysis of the tetrazoles.⁸

Chemical reactivities of tetrazolopyridines. The existence of the reactive tautomeric azido forms in tetrazolopyridines has been confirmed by cycloadditions with enamines.⁹ The thermal cycloaddition reactions of tetrazolo[1,5-a]pyridine with dipolarophiles at 150–180°,¹⁰ and its thermal conversion to 2-cyanopyrrole, 2-aminopyridine and glutaconitrile¹¹ have been explained by the intermediacy of 2-pyridyl-nitrene, and furthermore, 2-pyridylnitrene and 2-pyridylcarbene are reported to be ring-expanded in the gas phase.¹¹

The present investigation was to determine the limit and scope of this type of cycloaddition reaction using substituted tetrazolopyridines.

Reactions of tetrazolopyridines 4, 6 and 7 with aniline in toluene in the presence or in the absence of cupric acetylacetonate were carried out, and the results summarized in Table 3 and Scheme II. When the reaction was carried out in the presence of cupric acetylacetonate in boiling toluene, 2-aminopyridine derivatives 8, 9 and 10 were produced in 55–60% yields together with azobenzene in about 10% yield, but the reactions proceeded with difficulty in the absence of catalyst at below 160°. The mechanism for the formation of these compounds might be explained by suggesting 2-pyridylnitrene intermediates (probably the triplet) which could be produced by the thermal decomposition of the reactive azido tautomer (as a function of the moderate temperature in the presence of the catalyst), followed by hydrogen abstraction. Neither 1,2- (13), nor 1,3-diazepines (14) were detected, though these products could be produced by the ring enlargements through nitrene insertion by analogy with the decomposition of phenyl azide in the presence of amine bases.¹² All attempts to effect the photochemical reactions of the tetrazolopyridines with aniline and diethylaminc in C₆H₆ or AcOH were unsuccessful.

SCHEME 3

TABLE 3. REACTIONS OF TETRAZOLOPYRIDINES AND 4-AZIDOPYRIDINE 1-OXIDE IN ANILINE AND TOLUENE

~ ·	Reaction			Proc	lucts
No.	temp	tim e hr	Catalyst	Compound No.	(Yield, %)
4	80	10	none	_	_
	120	10	none	_	_
	170	10	none	8 (10)	11 (trace)
	120	10	Cu(acc) ₂	8 (15)	11 (trace)
	120	30	Cu(acc) ₂	8 (59)	11 (10)
6	170	10	none	9 (20)	11 (trace)
	120	10	$Cu(aac)_2$	9 (50)	11 (10)
	125	13	Cu(aac) ₂	9 (58)	11 (10)
7	170	10	none	10 (18)	11 (10)
	120	10	Cu(aac) ₂	10 (48)	11 (trace)
	125	30	Cu(aac) ₂	10 (56)	11 (15)
15	120	10	Cu(aac) ₂	16 (5)	
	120	30	Cu(aac) ₂	16 (10)	

Cu(aac)₂ = Cupric Acetylacetonate

In contrast, the reaction of 4-azidopyridine 1-oxide (15) with aniline in toluene in the presence of cupric acetylacetonate resulted in the formation of 16. The structure of 16 was assigned as 4,4'-azopyridine 1,1'-dioxide in comparison with a specimen prepared by the reduction of 4-nitropyridine 1-oxide.¹³

Comment	Beestien	Reaction			Products				
No.	temps	time hr	Solvent	Compound No.	m.p.	Yield %	$v_{C=0}^{KBr}$ (cm ⁻¹)		
4	150	7	none	17	120-121*	46	1722 1708		
5	60	11	CHCl ₃	18	80-83°	44	1738		
6	140	3	none	19	148-150	90	1730 1705		
7	145	3	none	20	149–151 ⁴	88	1724		

TABLE 4. 1,3-DIPOLAR CYCLOADDITION OF TETRAZOLO[1,5-a]PYRIDINES WITH DIMETHYL ACETYLENEDI-CARBOXYLATE

• Lit. (m.p. 112-114°), see ref. 10.

^b Found: C, 44·58; H, 2·95; N, 18·68. Requires C, 44·54; H, 3·06; N, 18·88%

^c Found: C, 43·13; H, 2·90; N, 22·65. Requires C, 43·01; H, 2·95; N, 22·79%

⁴ Found: C, 38.63; H, 2.72; N, 16.48. Requires C, 38.73; H, 2.66; N, 16.42%

Treatment of 4 with dimethyl acetylenedicarboxylate (DAC) gave no cycloadduct even in refluxing CHCl₃, but under the more drastic condition of absence of solvent at 150° afforded a cycloadduct (17) as suggested by Huisgen *et al.*¹⁰ The analogous reactions of 5, 6 and 7 with DAC gave the corresponding cycloadducts, 18, 19 and 20 in about 50–90% yields.

On the other hand, treatment of 15 with DAC in toluene or C_6H_6 at 80° afforded 21 in about 7% yield, but in MeOH at room temperature gave 7-azido-2,3-dioxo-pyrazolo[2,1-a]pyridine (24) in 5% yield. In both cases, intractable tarry materials always accompanied these products. These results are summarized in Scheme III and Table 4.

EXPERIMENTAL

All m.ps were measured on a Yanagimoto micromelting point apparatus and uncorrected. The microanalyses were performed on a Perkin-Elmer 240 Elemental Analyser, while the IR and UV spectra were obtained on a JASCO Model IR-S and a ORD/UV-5 spectrometers, respectively. The NMR spectra were recorded with a JEOL Model C-60-XL spectrometer, TMS as internal standard.

Tetrazolo[1,5-a]pyridine (4). Compound 4 was prepared by the method of Boyer et al.⁶; m.p. 158-160° (lit.⁶ 156-158°), UV (EtOH) max 260 nm (ε 3,610).

5-Chloro-tetrazolo[1,5-a]pyridine (5). Compound 5 was prepared by the method of Reimlinger¹⁴; m.p. 126-127° (decomp.) (lit.¹⁴ 120°), UV (EtOH) max 240 nm (ε 30,560), 260 (18,370).

6-Nitro-tetrazolo[1,5-a]pyridine (6). A solution of 4 (100 g, 0.083 mol) in conc H₂SO₄ (60 ml) fuming HNO₃ (6.5 ml) was heated at 110–120° for 9 hr. After cooling, the mixture was poured into ice-water and neutralized with Na₂CO₃. The precipitated product was filtered and recrystallized from EtOH acidified with few drops of HCl to give colorless needles (6), m.p. 147–148° (80–90%), UV (EtOH) max 233 nm (ϵ 12,970), 308 (5,130) and 397 (2,740), identified by spectroscopic and m.m.ps with a specimen prepared from 5-nitro-2-chloropyridine and NaN₃ in HCl.⁶

6-Bromo-tetrazolo[1,5-a]pyridine (7). To a solution of 4 (30 g, 0.025 mol) in AcOH (30 ml) was added dropwise a mixture of Br₂ (12 ml) in AcOH (10 ml) and the solution heated at 75° for 18 hr in a sealed tube. After neutralization with 20% NaOH (30 ml), the precipitated crystals were recrystallized from EtOH to give 7, m.p. 155-157°, (2.8 g, 56%), UV (EtOH) max 266 nm (ε 3,520). (Found: C, 30.40; H, 1.68; N, 28.25. C₅H₃N₄Br requires C, 30.14; H, 2.01; N, 28.14%).

Thermal decompositions of tetrazolo[1,5-a]pyridines and 4-azido-pyridine 1-oxide in the presence of aniline and cupric acetylacetonate. General Method. A mixture of tetrazolo[1,5-a]pyridine (0·1 mol) and/or 4-azidopyridine 1-oxide (0·1 mol) in aniline (0·1 mol), cupric acetylacetonate (0·2 mol) and toluene (20 ml) was heated in a sealed tube. The solvent was removed under reduced pressure and the tarry residue chromatographed on silica gel using C_6H_6 : EtOH (5:1) as eluent. These results are summarized in Table 3.

1,3-Dipolar cycloadditions of tetrazolo[1,5-a]pyridines with dimethyl acetylenedicarboxylate. A mixture of tetrazolo[1,5-a]pyridines (4-7) (0.01 mol) and dimethyl acetylenedicarboxylate (0.012 mol) was heated in an oil bath. After cooling, work-up involved filtration, evaporation of solution, and chromatography (silicic acid) of the residue using CHCl₃ as elucnt. These results are summarized in Table 4.

1,3-Dipolar cycloaddition of 4-azido-pyridine 1-oxide with dimethyl acetylenedicarboxylate. (a) A solution of 15 (0.4 g), dimethyl acetylenedicarboxylate (0.42 g) and toluene (20 ml) of C_6H_6 (20 ml) was heated at 80° for 1.5 hr. The solution was concentrated *in vacuo*, and work-up of the residue as described above afforded 21 (0.054 g, 6.6%): m.p. 205-208°; v_{max}^{KB} 1760, 1730 cm⁻¹ (COOCH₃). (Found: C, 47.30; H, 3.78; N, 20.02. $C_{11}H_{10}N_4O_5$ requires C, 47.40; H, 3.62; N, 20.14%). (b) A solution of 15 (0.4 g) and dimethyl acetylenedicarboxylate (0.42 g) in MeOH (20 ml) was stirred at room temp overnight. The solution was concentrated *in vacuo*, and work-up of residue as described above afforded 24 (0.04-0.06 g): m.p. 194-196°;

 $v_{\text{max}}^{\text{KBr}}$ 2160 (N₃), 1713 (COOCH₃ and C=O), 1645 cm⁻¹ (CO-N). (Found: C, 48.53; H, 2.29; N, 22.95. C₁₀H₆N₄O₄ requires: C, 48.78; H, 2.46; N, 22.76%).

Acknowledgement-We are indebted to Mr. M. Nonaka for his technical assistance.

REFERENCES

- ¹ T. Sasaki, K. Kanematsu and A. Kakehi, J. Org. Chem. in press
- ² T. Sasaki, K. Kanematsu and M. Murata, Ibid. 36, 446 (1971)
- ³ P. A. S. Smith, Arylnitrenes and Formation of Nitrenes by Rupture of Heterocyclic Ring in Nitrenes, Ed. by W. Lwowski, p 99, Interscience Publishers (1970)
- ⁴ G. Labbe, Chem. Review 69, 345 (1968)
- ⁵ C. Wentrup, Tetrahedron 26, 4969 (1970)
- ⁶ J. H. Boyer, D. I. McCane, W. J. McCarville and A. T. Tweedie, J. Am. Chem. Soc. 75, 5298 (1953)
- ⁷ ^a J. H. Boyer and E. J. Miller, Jr, *Ibid.* 81, 4671 (1959); ^b J. H. Boyer, M. S. Cheng and R. F. Reinisch, J. Org. Chem. 25, 286 (1960)
- ⁸ C. Wentrup and W. D. Crow, Tetrahedron 26, 4915 (1970)
- ⁹ R. Fusco, S. Rossi and S. Mariorana, Tetrahedron Letters 1965 (1965)
- ¹⁰ R. Huisgen and K. V. Fraunberg, Ibid. 2595 (1969)
- ¹¹ W. D. Crow and C. Wentrup, Tetrahedron 26, 3965 (1970)
- ¹² R. A. Odum and A. M. Aaronson, J. Am. Chem. Soc. 91, 5680 (1969)
- ¹³ E. Ochiai, J. Org. Chem. 18, 534 (1953)
- ¹⁴ H. Reimlinger, Chem. Ber. 103, 1900 (1970)